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Abstract
In the present paper, we enlarge the method of Debergh, Beckers and Szafraniec
for non-Hermitian Hamiltonians with complex parameters and obtain real
eigenvalues. For the case of non-unitary squeeze operators with two complex
parameters of non-Hermitian harmonic oscillator, we obtain discrete complex
spectrum and for special values of the complex parameters, the spectrum is
discrete real and positive even though the corresponding operators are not PT
symmetric.

PACS numbers: 02.30.Tb, 03.65.Ge, 42.50.Dv

1. Introduction

Recently, Debergh et al [1] discussed the non-Hermitian position and momentum operators,
leading to the generalized Heisenberg relations. The non-Hermitian oscillator with real spectra
has been recently studied [2, 3] and exploited [4–6] in an intensive way, leading to new trends
in fundamental quantum mechanics. According to [4–6], the authors replaced the well-known
Hermiticity relation H = H† by the weaker and more physical requirement H +

+ = H, where
+
+ represents combined parity reflection and time reversal PT, and obtained new classes of
complex Hamiltonians whose spectra are still real and positive. These PT symmetric theories
may be viewed as analytic continuations of conventional theories from real to complex phase
space. Also the authors of [1] in the papers [2, 3] studied the oscillator-like Hamiltonians of
squeezing.

Quantum systems characterized by non-Hermitian Hamiltonian are of interest in several
areas of theoretical physics [7]. Several authors have also studied [8, 9] the standard one-
dimensional Schrödinger Hamiltonians with complex-valued potentials giving rise to a real
energy spectrum. The simple example of the harmonic oscillator with complex mass leads to
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a non-Hermitian Hamiltonian with real spectrum, i.e. h̄ω
(
n + 1

2

)
and the uncertainty principle

of Heisenberg holds. The case where the parameters of the generalized harmonic oscillator are
time-dependent and the Hamiltonian is either Hermitian or non-Hermitian, has been studied
by Baskoutas and co-workers [10–12] in a series of publications, mainly using the method of
time evolution and the existence of squeezing.

Recently in a separate paper [13], the displaced squeezed number states of the phonon
field in polar semiconductors has been examined. Also in another paper [14] entitled ‘Non-
unitary Weyl and squeeze operators’, new states which can be considered as a generalization
of the usual coherent and squeezed states have been constructed.

The present paper is organized as follows. In section 2, we apply the method of [1]
with complex parameters and prove the existence of a real spectrum. In section 3, we study
non-unitary squeezed states with two complex parameters with the help of the non-Hermitian
harmonic oscillator and obtain a discrete complex spectrum or a real spectrum for specific
cases, where the uncertainty principle holds. Finally, section 4 is devoted to concluding
remarks.

2. Cases of non-Hermitian harmonic oscillator

Before studying the non-Hermitian harmonic oscillator, we extend the method of [1] for
complex parameters, where the operators A and A+ are not adjoint, i.e.

A = d

dx
+ f (x) A+ = x + b [A,A+] = 1 (A+)† �= A (1)

with the complex function f (x) = f1(x) + if2(x) and b a real parameter. The complex
function f (x) must satisfy the existence of the integral F(x) = ∫

f (x) dx so that e−F(x) → 0
for x = ±∞.

For f (x) = cx3, c > 0 and b = 0, we get the example of [1], while for c = c1 + ic2,
c1 > 0 and b �= 0, we obtain the eigenfunctions

�n(x) = Ñn(x + b)n e− c
4 x4

(2)

of the non-Hermitian operator

H = A+A + 1
2 (3)

which satisfy the equation(
(x + b)

(
d

dx
+ cx3

)
+

1

2

)
�n(x) =

(
n +

1

2

)
�n(x) n = 0, 1, 2, . . . (4)

and the relations

A�0(x) = 0 �n(x) = Ñn(x + b)n e− c
4 x4 = (Ñn/Ñ0)(A

+)n�0(x). (5)

The normalization factor Ñn is given by the expression

Ñn =
{

n∑
l=0

1

(2l)!

(
d2l

db2l
b2n

)
1

N2
l

}− 1
2

(6)

where

Nl =
√

2
(

c1
2

) 2l+1
8√

�
(

2l+1
4

) (7)

is the normalization factor for b = 0.



Non-Hermitian harmonic oscillator with discrete complex or real spectrum 2509

Another simple example is as follows:

A = d

dx
+ λx A+ = x [A,A+] = 1 Re λ > 0 (8)

with the eigenfunctions

�n(x) =
(

λ1

π

) 1
4 λ

1
2 (n+ 1

2 )

1√
�

(
n + 1

2

) e− λ
2 x2

xn (9)

which satisfy the corresponding relations (5).
The mean values of the operators x̂ = x, p̂ = −i d

dx
and the dispersion relations are

given by

x̄ = 0 p̄ = 0 x̄2 = (�x)2 = n + 1/2

λ1 (10)

p̄2 = (�p)2 = λ1

[
n − 1/4

n − 1/2
+

λ2
2

λ2
1

(n + 1/2)

]
.

From the above results, we have

(�x)2(�p)2 =
[
(n + 1/2)(n − 1/4)

n − 1/2
+

λ2
2

λ2
1

(n + 1/2)2

]
� 1

4
. (11)

For n = 0, the above relation takes the form

(�x)(�p) = 1

2

√
1 +

λ2
2

λ2
1

= 1

2

|λ|
λ1

� 1

2
. (12)

In the following, we consider the adjoint operators

B = 1√
2λ1

(λx̂ + ip̂) = µa + νa+

B+ = 1√
2λ1

(λ∗x̂ − ip̂) = µ∗a+ + ν∗a
(13)

where a, a+ are the annihilation and creation operators and

µ = 1

2
√

λ1
(λ + 1) ν = 1

2
√

λ1
(λ − 1) |µ|2 − |ν|2 = 1 (14)

the Yuen [15] operators. The uncertainty principle is given by the relation

(�x)(�p) = 1

2
|µ + ν||µ − ν| = 1

2

√
1 +

λ2
2

λ2
1

= 1

2

|λ|
λ1

� 1

2
(15)

that coincides with the formula (12).
Another example with interest is also defined by

A = d

dx
+

z

2
sinh x A+ = x [A,A+] = 1 Re z > 0 (16)

with the eigenfunctions

�n(x) = Nn e− z
2 cosh xxn (17)

which satisfy the equation(
x

(
d

dx
+

z

2
sinh x

)
+

1

2

)
�n(x) =

(
n +

1

2

)
�n(x) (18)
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and the normalization factor Nn is given by the relation

N2
n

∫ +∞

−∞
e− z+z∗

2 cosh xx2n dx = 2N2
n

∫ +∞

0
e−z1 cosh x x2n dx = 1. (19)

From the integral representation of the modified Bessel function [16] Kν(z), i.e.

Kν(z1) =
∫ ∞

0
e−z1 cosh x cosh ν x dx (20)

we obtain (
∂2nKν(z1)

∂ν2n

)
ν=0

=
∫ ∞

0
e−z1 cosh xx2n dx (21)

and the normalization factor takes the form

Nn = 1√
2

[(
∂2n

∂ν2n
Kν(z1)

)
ν=0

]− 1
2

. (22)

The mean values are

x̄ = 0 p̄ = 0 (23)

x̄2 =
[(

∂2(n+1)

∂ν
2(n+1)

Kν(z1)

)
ν=0

] [(
∂2n

∂ν2n
Kν(z1)

)
ν=0

]−1

(24)

p̄2 = 1

2

[(
∂2n

∂ν2n
Kν(z1)

)
ν=0

]−1 {
z1

2

(
∂2n

∂ν2n
[Kν+1(z1) + Kν−1(z1)]

)
ν=0

+ 2n2

(
∂2(n−1)

∂ν2(n−1)
Kν(z1)

)
ν=0

− z2
1 − z2

2

8

(
∂2

∂ν2n
[Kν+2(z1) + Kν−1(z1)]

)
ν=0

}
(25)

and the uncertainty principle for n = 0 has the form

(�x)(�p) = 1

2

|z|
z1

1

K0(z1)

[
z1K1(z1)

(
∂2

∂ν2
Kν(z1)

)
ν=0

] 1
2

. (26)

From the above results, we see that many examples exist for non-Hermitian Hamiltonians
H = A+A + 1

2 with the same real spectrum (and with the normalization condition to be valid).
According to the paper [14], where we have generalized the usual coherent and squeezed

states for non-unitary Weyl and squeeze operators, we shall prove with the help of the non-
Hermitian harmonic oscillator with two complex parameters, the existence of a discrete
complex spectrum or of a real spectrum for specific cases.

3. Non-unitary squeeze operator

We consider the unitary squeeze operator

S(z) = e
1
2 (za+2−z∗a2) (27)

where the operators a and a+ are adjoint operators with the commutation relation

[a, a+] = 1. (28)
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For the case where the operators a, a+ are non-adjoint, i.e. (a+)† �= a and the relation (28)
holds, the squeeze operator (27) is non-unitary. For example, a = d

dx
, a+ = x the operator

(27) is non-unitary

S(z) = e
1
2 (zx2−z∗ d2

dx2 )
S(z)S†(z) �= 1. (29)

In the following, we consider the nonHermitian harmonic oscillator with two complex
parameters z, b with Re z > 0, Re b > 0, i.e.

H = 1
2 (zx̂2 + bp̂2) (30)

H † = 1
2 (z∗x̂2 + b∗p̂2) (31)

with H �= H †.
The above operators in x- and p-representation take the form

H = 1

2

(
zx2 − b

d2

dx2

)
H † = 1

2

(
z∗x2 − b∗ d2

dx2

)
(32)

H = 1

2

(
−z

d2

dp2
+ bp2

)
H † = 1

2

(
−z∗ d2

dp2
+ b∗p2

)
. (33)

According to the above operators, we can define the corresponding non-unitary squeeze
operators with the two complex parameters z and b as

Sx(z, b) = e
1
2 (zx2−b d2

dx2 )
Sx

†(z, b) = e
1
2 (z∗x2−b∗ d2

dx2 ) (34)

Sp(z, b) = e
1
2 (bp2−z d2

dp2 )
Sp

†(z, b) = e
1
2 (b∗p2−z∗ d2

dp2 )
. (35)

Since the operators Sx(z, b) and 1
2

(
zx2 − b d2

dx2

)
commute, the eigenfunctions of Sx(z, b)

coincide with the corresponding eigenfunctions of the operator 1
2

(
zx2 − b d2

dx2

)
. Therefore, we

have to solve the equation(
1

2

d2

dx2
+

E

b
− 1

2

z

b
x2

)
�n(x) = 0. (36)

The solution of the above equation has the form

�n(x) = Nn e− 1
2

√
z
b
x2

Hn

(
4

√
z

b
x

)
(37)

with the eigenvalues

E = √
zb

(
n + 1

2

)
. (38)

The eigenfunctions

�n
∗(x) = Nn e− 1

2

√
z∗
b∗ x2

Hn

(
4

√
z∗

b∗ x

)
(39)

lead to the eigenvalues

E = √
z∗b∗ (

n + 1
2

)
(40)

corresponding to the operator H †. The polynomials Hn(u) are the Hermite polynomials and
the normalization factor Nn is given by

Nn = 4

√√
zb∗ +

√
z∗b

2π |b|
1√
2nn!

(
Pn

(
2
√|z||b|√

zb∗ + bz∗ + 2|z||b|
))− 1

2

. (41)
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For the calculation of the resulting integrals, we use the formula [17]∫ +∞

−∞
e−sx2

Hm(β1x)Hn(β2x) dx = n!
(π

s

) 1
2

(
−1 − γ1

1 − γ2

) m−n
4

× (
2(γ1 + γ2 − 1)

1
2
)m+n

2 P
|m−n|

2
m+n

2

[(
γ1γ2

γ1 + γ2 − 1

) 1
2

]
(42)

where s > 0, γ1 = β2
1
s
, γ2 = β2

2
s

, m � n, P l
n(u) are the associated Legendre polynomials [18]

and Pn(u) the usual Legendre polynomials. The numbers m and n in the above formula are of
the same parity.

The eigenfunctions in the p-representation take the form

ϕn(p) = Ñn e− 1
2

√
b
z
p2

Hn

(
4

√
b

z
p

)
(43)

where

Ñn = 4

√√
zb∗ +

√
z∗b

2π |z|
1√
2nn!

(
Pn

(
2
√|b||z|√

zb∗ + bz∗ + 2|z||b|
))− 1

2

(44)

with the same eigenvalues (38). For the case b = z∗, we obtain the real spectrum

E = |z|(n + 1
2

)
(45)

with the eigenfunctions

�n(x) = 4

√
z1

π |z|
1√
2nn!

1√
Pn

( |z|
z1

) e− z
2|z| x

2

Hn

(√
z

|z|x
)

(46)

ϕn(p) = 4

√
z1

π |z|
1√
2nn!

1√
Pn

(
|z|
z1

) e− z∗
2|z| p

2

Hn

(√
z∗

|z|p
)

. (47)

The main characteristic point, in the case of the non-Hermitian harmonic oscillator in x- and
p-representation, is that the eigenfunctions are not orthonormal, namely∫ +∞

−∞
�∗

n(x)�l(x) dx =
√

n!

l!

P
|l−n|/2
(l+n)/2

( |z|
z1

)
√

Pn

( |z|
z1

)
Pl

( |z|
z1

) �= δln. (48)

Results of the same form are obtained for the eigenfunctions of momentum space.
By using the eigenfunctions (46) in x- and p-representation, we can find the mean values

x̄, p̄, x̄2, p̄2 and the dispersion relations (�x)2, (�p)2. After some algebra, we obtain
x̄ = 0, p̄ = 0,

x̄2 = p̄2 = 1

2

(n + 1)Pn+1
( |z|

z1

)
+ nPn−1

( |z|
z1

)
+ P 1

n

( |z|
z1

)
Pn

( |z|
z1

) (49)

and

(�x)(�p) = 1

2

(n + 1)Pn+1
( |z|

z1

)
+ nPn−1

( |z|
z1

)
+ P 1

n

( |z|
z1

)
Pn

( |z|
z1

) . (50)

For n = 0, the above relations yield

(�x)(�p) = 1

2

√
1 +

z2
2

z2
1

� 1

2
. (51)
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From the operators (32), we can construct the adjoint Yuen [15] operators � and �+ and obtain
the same uncertainty principle, i.e.

� = (
√

zb∗ +
√

z∗b)−
1
2 (

√
zx̂ + i

√
bp̂) = µa + νa+

(52)
�+ = (

√
zb∗ +

√
z∗b)−

1
2 (

√
z∗x̂ − i

√
b∗p̂) = µ∗a+ + ν∗a

with

[�,�+] = 1 µ = [2(
√

zb∗ +
√

z∗b)]−
1
2 (

√
z +

√
b)

(53)
ν = [2(

√
zb∗ +

√
z∗b)]−

1
2 (

√
z −

√
b) |µ|2 − |ν|2 = 1.

The uncertainty principle is given by the relation

(�x)(�p) = 1

2
|µ + ν||µ − ν| = 1

2

√
4|z||b|

zb∗ + bz∗ + 2|z||b| = 1

2

√
2|z||b|

z1b1 + z2b2 + |z||b| . (54)

For b∗ = z, we obtain the relation (51). The above formula results easily from the
eigenfunctions (37), (43) for n = 0, so that

x̂2 = (�x)2 = |b|√
z∗b +

√
zb∗ p̂2 = (�p)2 = |z|√

z∗b +
√

zb∗ (55)

and we obtain the relation (54).
From the above results, we conclude that where we have a discrete complex spectrum

(38) for non-unitary squeeze operators (34) and for b∗ = z, the eigenvalues are real (45), i.e.
|z|(n + 1

2

)
and there exist eigenstates for these non-unitary squeeze operators. Instead of the

relation b∗ = z, there also exists the relation

z1b2 + z2b1 = 0 or b2 = −z2b1

z1
(56)

where the eigenvalues of (38) are real and positive, i.e.

E =
√

z1b1 − z2b2

(
n +

1

2

)
=

√
b1

z1
|z|

(
n +

1

2

)
(57)

which, for b1 = z1, coincides with the relation (45).
The discrete complex spectrum for the non-unitary squeeze operator has the form

Sx(z, b)�n(x) = e
1
2

√
zb(n+ 1

2 )ψn(x) (58)

where ψn(x) are the eigenfunctions (37). For z = |z| eiθ , b = |b| eiϕ, the above equation
yields

Sx(z, b)�n(x) = e
1
2

√|z||b|(cos θ+ϕ

2 +i sin θ+ϕ

2 )ψn(x) (59)

and the exponent represents a complex phase.

Because of the relation (56), for θ + ϕ = 0, we obtain the real phase e
1
2

√
b1
z1

|z|(n+ 1
2 ) and for

θ + ϕ = π, the imaginary phase ei 1
2

√
b1
z1

|z|(n+ 1
2 ).

Finally, we consider a simple example, which is connected to the PT symmetry by the
non-Hermitian Hamiltonian

H = p2

2m
+

mω2

2
(x2 + 2λx) (60)

with Re(m) > 0 and λ complex.



2514 A Jannussis et al

For the case m and λ real, the above operator is Hermitian with the eigenfunctions

�n(x) =
(mω

πh̄

) 1
4 1√

2nn!
e− mω

2h̄
(x+λ)2

Hn

(√
mω

h̄
(x + λ)

)
(61)

and the eigenvalues

En(λ) = h̄ω

(
n +

1

2

)
− mω2λ2

2
. (62)

For the conservation of PT symmetry, the following relation holds

P : x → −x − 2λ p → −p T : p → −p i → −i. (63)

For the case of complex m and λ, we obtain the condition

H∗ = H† = p2

2m∗ +
m∗ω2

2
(x2 + 2λ∗x) (64)

where H∗ is the conjugate of H and H† is the adjoint.
The Hamiltonian (60) in x-representation satisfies the wave equation

h̄2

2m

d2�n

dx2
+

(
E +

mω2λ2

2
− mω2

2
(x + λ)2

)
�n(x) = 0 (65)

with the solution

�n(x) = Nn e− mω
2h̄

(x+λ)2
Hn

(√
mω

h̄
(x + λ)

)
(66)

and the complex eigenvalues are

En(λ) = h̄ω

(
n +

1

2

)
− mω2λ2

2
. (67)

The necessary condition so that the above eigenvalues are real, is

Im(mλ2) = m2
(
λ2

1 − λ2
2

)
+ 2m1λ1λ2 = 0 or m2 = −2m1λ1λ2

λ2
1 − λ2

2

(68)

and we obtain the real eigenvalues

En(λ1, λ2) = h̄ω

(
n +

1

2

)
− m1ω

2

2

(
λ2

1 + λ2
2

)2

λ2
1 − λ2

2

. (69)

The normalization factor Nn for the real eigenvalues (69) after some algebra takes the
form

Nn =
(m1ω

h̄

) 1
4

e
− m1ω

2h̄

λ2
2

λ2
1
δ2

{
n∑

�=0

(n

�

)2
H�(K)H�(K

∗)
(

4|m|
m1

)n−�

�

(
n − � +

1

2

)}− 1
2

(70)

where

K =
√

mω

h̄
(λ − δ) δ = λ1

λ2
1 + λ2

2

λ2
1 − λ2

2

. (71)

From the above results, we see that the spectrum (69) is real, even though the Hamiltonian
(60) in this case is not PT symmetric.

By using the eigenfunctions for the ground state n = 0 in x- and p-representation, we
obtain the dispersion relations

(�x)2 = h̄

2m1ω
(�p)2 = h̄|m|2ω

2m1
and (�x)(�p) � h̄

2

|m|
m1

. (72)
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The case of real mass and complex λ is particularly interesting, with the complex eigenvalues

En = h̄ω

(
n +

1

2

)
− mω2

2
(λ1 + iλ2)

2 (73)

and the following eigenfunctions in x- and p-representation

�n(x) =
(mω

πh̄

) 1
4

e− mω
2h̄

λ2
2

[
2nn!Ln

(
−2

mω

2h̄
λ2

2

)]− 1
2

e− mω
2h̄

(x+λ)2
Hn

(√
mω

h̄
(x + λ)

)
(74)

�n(x) =
(

1

πh̄mω

) 1
4

e− mω
2h̄

λ2
2

[
2nn!Ln

(
−2

mω

2h̄
λ2

2

)]− 1
2

e− p2

2mh̄ω
+i λp

h̄ Hn

(√
1

h̄mω
p

)
(75)

where Ln

(−2 mω
2h̄ λ2

2

)
are the Laguerre polynomials.

4. Conclusion

In conclusion, we have enlarged the method of [1] for the non-Hermitian harmonic oscillator
with complex parameters, where the operators A and A+ are not adjoint (A+)† �= A and
satisfy the relation [A,A+] = 1. From the results, we see that many examples exist for the
non-Hermitian Hamiltonian H = A+A + 1

2 with the same real spectrum. For the non-unitary
squeeze operators (34), and for a = d

dx
, a+ = x, [a, a+] = 1, we obtain the discrete complex

eigenvalues (38). According to the relation (56), we get a discrete real spectrum (57), even
though the Hamilton operator (32) is not PT symmetric. Also the spectrum (69) is real even
though the Hamiltonian (60) is not PT symmetric. For the case of real mass and complex
eigenvalues (73), the corresponding operator is not PT symmetric.

For the non-unitary squeeze operator S(z,w) = exp
[

1
2

(
za+2 − w∗a2

)]
and the non-

unitary Weyl operator D(α, β) = exp(αa+ − β∗a) in this case a, a+ are adjoint, we
have extended the usual definition of the squeezed states by the form [14] |z,w, α, β〉 =
D(α, β)S(z,w)|0〉, from which we obtain

|z,w, α, β〉 =
√

cosh |z|
cosh

√
zw∗ e

1
2 α(α∗−β∗) exp

{
z

2

[
tanh

√
zw∗

√
zw∗ (a+ − β∗)2

− tanh |z|
|z| (a+ − α∗)2

]}
|z, α〉. (76)

For β = α, w = z, the above squeeze states coincide with the usual |z, α〉.
Also, from the non-Hermitian operator (34), we can construct the Yuen operators (52) (two

photon states) and can easily obtain the uncertainty relation. More details and applications
relative to squeeze states are referred to in the recent review article by Dodonov [19].

Finally, we remark that the problem of the existence of eigenfunctions and real discrete
eigenvalues for the non-unitary squeeze operators is of physical interest. We hope that the
present ideas will find many applications.
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